PODCAST – ODC. 38

Cukier we krwi – jak go kontrolować? – Mateusz Sprengel

Sprawdź gdzie jeszcze możesz przesłuchać odcinek:

Spotify

Korzystasz z aplikacji Spotify? Podcast Dietetyka oparta na faktach jest tam dostępny.

Apple podcast

Używasz iPhone’a lub iPad’a? Znajdziesz tam aplikację Apple podcast. 

Google podcast

Jesteś użytkownikiem Androida? Darmowa aplikacja od Google’a świetnie się sprawdzi. 

Youtube

Jesteś zwolennikiem Youtube? Podcast Dietetyka oparta na faktach jest tam publikowany.

Soundcloud

Chcesz pobrać podcast? Na platformie Soundcloud jest to możliwe.

Zagadnienia, które poruszamy w podcaście:

  • Czym jest glikemia i jakie ma znaczenie?

  • Stan hipergliekiemi i hipoglikemii – czym jest i jakie ma konsekwencje?

  • Jakie czynniki wpływają na glikemie poposiłkową i glikemie na czczo?

  • -obecny stan gospodarki węglowodanowej

  • -dobór pokarmów

  • -manipulacje w ramach konkretnego posiłku

  • -czynniki niedietetyczne

Badania cytowane w podcaście:

 

Zalecenia PTD:

2019 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clin Diabet 2019; 8, 1. DOI: 10.5603/DK.2019.0001.

https://cukrzyca.info.pl/zalecenia_kliniczne/zalecenia_kliniczne_dotyczace_postepowania_u_chorych_na_cukrzyce_2020

Skutki poposiłkowej hiperglikemii:

Ceriello A. Postprandial Hyperglycemia and Diabetes Complications. Is It Time to Treat? Diabetes 2005 Jan; 54(1): 1-7.

https://doi.org/10.2337/diabetes.54.1.1

Nadmiar energii:

Boden G, Homko C, Barrero CA, et al. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci Transl Med. 2015;7(304):304re7. doi:10.1126/scitranslmed.aac4765

https://pubmed.ncbi.nlm.nih.gov/26355033/

Deficyt energetyczny:

Johnson ML, Distelmaier K, Lanza IR, et al. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes. 2016;65(1):74‐84. doi:10.2337/db15-0675

https://pubmed.ncbi.nlm.nih.gov/26324180/

Białko:

Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients. 2017;9(9):982. Published 2017 Sep 6. doi:10.3390/nu9090982

https://pubmed.ncbi.nlm.nih.gov/28878172/

Leidy, H. J., Clifton, P. M., Astrup, A., Wycherley, T. P., Westerterp-Plantenga, M. S., Luscombe-Marsh, N. D., … Mattes, R. D. (2015). The role of protein in weight loss and maintenance. American Journal of Clinical Nutrition, 101(6 (Suppl.)), 1320S-1329S. https://doi.org/10.3945/ajcn.114.084038

Błonnik:

McRae MP. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses. J Chiropr Med. 2018;17(1):44‐53. doi:10.1016/j.jcm.2017.11.002

https://pubmed.ncbi.nlm.nih.gov/29628808/

Skrobia oporna:

Lockyer, S. and Nugent, A.P. (2017), Health effects of resistant starch. Nutr Bull, 42: 10-41. doi:10.1111/nbu.12244

https://onlinelibrary.wiley.com/doi/full/10.1111/nbu.12244

Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258‐272. doi:10.1080/09637480902970975

https://pubmed.ncbi.nlm.nih.gov/19562607/

Tłuszcze:

Imamura F, Micha R, Wu JH, et al. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016;13(7):e1002087. Published 2016 Jul 19. doi:10.1371/journal.pmed.1002087

https://pubmed.ncbi.nlm.nih.gov/27434027/

Aktywność fizyczna i trening:

Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. Published 2017 Mar 1. doi:10.1136/bmjsem-2016-000143

https://pubmed.ncbi.nlm.nih.gov/28879026/

Burstein R, Polychronakos C, Toews CJ, MacDougall JD, Guyda HJ, Posner BI. Acute reversal of the enhanced insulin action in trained athletes. Association with insulin receptor changes. Diabetes. 1985;34(8):756‐760. doi:10.2337/diab.34.8.756

https://pubmed.ncbi.nlm.nih.gov/3894119/

Bailey DP, Maylor BD, Orton CJ, Zakrzewski-Fruer JK. Effects of breaking up prolonged sitting following low and high glycaemic index breakfast consumption on glucose and insulin concentrations. Eur J Appl Physiol. 2017;117(7):1299‐1307. doi:10.1007/s00421-017-3610-4

https://pubmed.ncbi.nlm.nih.gov/28500416/

Owoce:

Rizkalla SW. Health implications of fructose consumption: A review of recent data. Nutr Metab (Lond). 2010;7:82. Published 2010 Nov 4. doi:10.1186/1743-7075-7-82

https://pubmed.ncbi.nlm.nih.gov/21050460/

Madero M, Arriaga JC, Jalal D, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: a randomized controlled trial. Metabolism. 2011;60(11):1551‐1559. doi:10.1016/j.metabol.2011.04.001

https://pubmed.ncbi.nlm.nih.gov/21621801/

Khan TA, Sievenpiper JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr. 2016;55(Suppl 2):25‐43. doi:10.1007/s00394-016-1345-3

https://pubmed.ncbi.nlm.nih.gov/27900447/

Sharma SP, Chung HJ, Kim HJ, Hong ST. Paradoxical Effects of Fruit on Obesity. Nutrients. 2016;8(10):633. Published 2016 Oct 14. doi:10.3390/nu8100633

https://pubmed.ncbi.nlm.nih.gov/27754404/

Choo VL, Viguiliouk E, Blanco Mejia S, et al. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies [published correction appears in BMJ. 2019 Oct 9;367:l5524]. BMJ. 2018;363:k4644. Published 2018 Nov 21. doi:10.1136/bmj.k4644

https://pubmed.ncbi.nlm.nih.gov/30463844/

Nabiał:

Sochol KM, Johns TS, Buttar RS, et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients. 2019;11(9):2237. Published 2019 Sep 17. doi:10.3390/nu11092237

https://pubmed.ncbi.nlm.nih.gov/31533272/

Abargouei AS, Janghorbani M, Salehi-Marzijarani M, Esmaillzadeh A. Effect of dairy consumption on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Int J Obes (Lond). 2012;36(12):1485‐1493. doi:10.1038/ijo.2011.269

https://pubmed.ncbi.nlm.nih.gov/22249225/

Rideout TC, Marinangeli CP, Martin H, Browne RW, Rempel CB. Consumption of low-fat dairy foods for 6 months improves insulin resistance without adversely affecting lipids or bodyweight in healthy adults: a randomized free-living cross-over study. Nutr J. 2013;12:56. Published 2013 May 2. doi:10.1186/1475-2891-12-56

https://pubmed.ncbi.nlm.nih.gov/23638799/

Czerwone mięso/nadmiar żelaza:

Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 2012;10:119. Published 2012 Oct 10. doi:10.1186/1741-7015-10-119

https://pubmed.ncbi.nlm.nih.gov/23046549/

Kawa:

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes [published correction appears in BMJ. 2018 Jan 12;360:k194]. BMJ. 2017;359:j5024. Published 2017 Nov 22. doi:10.1136/bmj.j5024

https://pubmed.ncbi.nlm.nih.gov/29167102/

Kofeina:

Shi X, Xue W, Liang S, Zhao J, Zhang X. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr J. 2016;15(1):103. Published 2016 Dec 28. doi:10.1186/s12937-016-0220-7

https://pubmed.ncbi.nlm.nih.gov/28031026/

Pora dnia/rytm dobowy:

Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27(6):1212‐1221.e3. doi:10.1016/j.cmet.2018.04.010

https://pubmed.ncbi.nlm.nih.gov/29754952/

Richter J, Herzog N, Janka S, Baumann T, Kistenmacher A, Oltmanns KM. Twice as High Diet-Induced Thermogenesis After Breakfast vs Dinner On High-Calorie as Well as Low-Calorie Meals. J Clin Endocrinol Metab. 2020;105(3):dgz311. doi:10.1210/clinem/dgz311

https://pubmed.ncbi.nlm.nih.gov/32073608/

Jakubowicz D, Wainstein J, Ahrén B, et al. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia. 2015;58(5):912‐919. doi:10.1007/s00125-015-3524-9

https://pubmed.ncbi.nlm.nih.gov/25724569/

Manipulacje w obrębie posiłku:

Ma J, Stevens JE, Cukier K, et al. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care. 2009;32(9):1600–1602.

https://pubmed.ncbi.nlm.nih.gov/19542012/

Diana Gentilcore, Reawika Chaikomin, Karen L. Jones, Antonietta Russo, Christine Feinle-Bisset, Judith M. Wishart, Christopher K. Rayner, Michael Horowitz, Effects of Fat on Gastric Emptying of and the Glycemic, Insulin, and Incretin Responses to a Carbohydrate Meal in Type 2 Diabetes, The Journal of Clinical Endocrinology & Metabolism, Volume 91, Issue 6, 1 June 2006, Pages 2062–2067

https://pubmed.ncbi.nlm.nih.gov/16537685/

Imai S, Matsuda M, Miyatani S, Hasegawa G, Fukui M, Kajiyama S. Crossover Study of the Effect of „Vegetables Before Carbohydrates” on the Reduction of the Postprandial Glucose and Insulin Levels in Japanese Patients with Type 2 Diabetes Mellitus. J Japan Diabetes Soc. 2010;53:112-5.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674531/

Imai S., Matsuda M., Hasegawa G., Fukui M., Obayashi H., Ozasa N., Kajiyama S., A simple meal plan of ‘eating vegetables before carbohydrate’ was more effective for achieving glycemic control than an exchange–based meal plan in Japanese patients with type 2 diabetes. Asia Pac J Clin Nutr 2011;20 (2):161-168

https://pubmed.ncbi.nlm.nih.gov/21669583/

Imai S., Fukui M., Ozasa N., Ozeki T., Kurokawa M., Komatsu T., Kajiyama S., Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet. Med. 30, 370–372 (2013)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674531/

Kuwata H., Iwasaki M., Shimizu S., Minami K., Maeda H., Seino S., Nakada K., Nosaka C., Murotani K., Kurose T., Seino Y., Yabe D., Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia (2016) 59:453–461

https://pubmed.ncbi.nlm.nih.gov/26704625/

Shukla AP, Andono J, Touhamy SH, et al. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diab Res Care 2017;5:e000440. doi:10.1136/ bmjdrc-2017-000440

https://pubmed.ncbi.nlm.nih.gov/28989726/

Nishino K., Sakurai M., Takeshita Y., Takamura T., Consuming Carbohydrates after Meat or Vegetables Lowers Postprandial Excursions of Glucose and Insulin in Nondiabetic Subjects. J Nutr Sci Vitaminol, 64, 316–320, 2018

https://pubmed.ncbi.nlm.nih.gov/30381620/

Shukla AP, Mauer E., Igel LI, Truong W., Casper A., Kumar RB, Saunders KH, Aronne LJ, Effect of Food Order on Ghrelin Suppression. Diabetes Care 2018 May; 41(5): e76-e77.

https://pubmed.ncbi.nlm.nih.gov/29487079/

 

Więcej o gościu

Mateusz Sprengel

Facebook

Instagram

Chcesz się z nami skontaktować? Napisz!

8 + 14 =